52 research outputs found

    Remote sensing, AI and innovative prediction methods for adapting cities to the impacts of the climate change

    Full text link
    Urban areas are not only one of the biggest contributors to climate change, but also they are one of the most vulnerable areas with high populations who would together experience the negative impacts. In this paper, I address some of the opportunities brought by satellite remote sensing imaging and artificial intelligence (AI) in order to measure climate adaptation of cities automatically. I propose an AI-based framework which might be useful for extracting indicators from remote sensing images and might help with predictive estimation of future states of these climate adaptation related indicators. When such models become more robust and used in real-life applications, they might help decision makers and early responders to choose the best actions to sustain the wellbeing of society, natural resources and biodiversity. I underline that this is an open field and an ongoing research for many scientists, therefore I offer an in depth discussion on the challenges and limitations of AI-based methods and the predictive estimation models in general

    Using Local Features to Measure Land Development in Urban Regions

    Get PDF
    Monitoring urban development in a given region provides valuable information to researchers. Currently available, very high resolution satellite images can be used for this purpose. However, manually monitoring land development using these large and complex images is time consuming and prone to errors. To handle this problem, an automated system is needed to measure development in urban regions. Therefore, in this study we propose such an automated method to measure land development in a given urban region imaged in different times. We benefit from novel land development measures for this purpose. They are based on local features obtained from sequential images. As a novel contribution, we represent these local features in a spatial voting matrix. Then, we propose five different land development measures on the formed voting matrix. We test our method on 19 sets of sequential panchromatic Ikonos images. Our test results indicate the possible use of our method in measuring land development automatically

    On Reward Shaping for Mobile Robot Navigation: A Reinforcement Learning and SLAM Based Approach

    Get PDF
    We present a map-less path planning algorithm based on Deep Reinforcement Learning (DRL) for mobile robots navigating in unknown environment that only relies on 40-dimensional raw laser data and odometry information. The planner is trained using a reward function shaped based on the online knowledge of the map of the training environment, obtained using grid-based Rao-Blackwellized particle filter, in an attempt to enhance the obstacle awareness of the agent. The agent is trained in a complex simulated environment and evaluated in two unseen ones. We show that the policy trained using the introduced reward function not only outperforms standard reward functions in terms of convergence speed, by a reduction of 36.9\% of the iteration steps, and reduction of the collision samples, but it also drastically improves the behaviour of the agent in unseen environments, respectively by 23\% in a simpler workspace and by 45\% in a more clustered one. Furthermore, the policy trained in the simulation environment can be directly and successfully transferred to the real robot. A video of our experiments can be found at: https://youtu.be/UEV7W6e6Zq

    From coarse wall measurements to turbulent velocity fields through deep learning

    Get PDF
    This work evaluates the applicability of super-resolution generative adversarial networks (SRGANs) as a methodology for the reconstruction of turbulent-flow quantities from coarse wall measurements. The method is applied both for the resolution enhancement of wall fields and the estimation of wall-parallel velocity fields from coarse wall measurements of shear stress and pressure. The analysis has been carried out with a database of a turbulent open-channel flow with friction Reynolds number Reτ=180Re_{\tau}=180 generated through direct numerical simulation. Coarse wall measurements have been generated with three different downsampling factors fd=[4,8,16]f_d=[4,8,16] from the high-resolution fields, and wall-parallel velocity fields have been reconstructed at four inner-scaled wall-normal distances y+=[15,30,50,100]y^+=[15,30,50,100]. We first show that SRGAN can be used to enhance the resolution of coarse wall measurements. If compared with direct reconstruction from the sole coarse wall measurements, SRGAN provides better instantaneous reconstructions, both in terms of mean-squared error and spectral-fractional error. Even though lower resolutions in the input wall data make it more challenging to achieve highly accurate predictions, the proposed SRGAN-based network yields very good reconstruction results. Furthermore, it is shown that even for the most challenging cases the SRGAN is capable of capturing the large-scale structures that populate the flow. The proposed novel methodology has great potential for closed-loop control applications relying on non-intrusive sensing

    Towards Autonomous Pipeline Inspection with Hierarchical Reinforcement Learning

    Get PDF
    Inspection and maintenance are two crucial aspects of industrial pipeline plants. While robotics has made tremendous progress in the mechanic design of in-pipe inspection robots, the autonomous control of such robots is still a big open challenge due to the high number of actuators and the complex manoeuvres required. To address this problem, we investigate the usage of Deep Reinforcement Learning for achieving autonomous navigation of in-pipe robots in pipeline networks with complex topologies. Moreover, we introduce a hierarchical policy decomposition based on Hierarchical Reinforcement Learning to learn robust high-level navigation skills. We show that the hierarchical structure introduced in the policy is fundamental for solving the navigation task through pipes and necessary for achieving navigation performances superior to human-level control
    corecore